Edge coloring of graphs with small average degrees
نویسندگان
چکیده
Let G be a simple graph with average degree . d and maximum degree . It is proved, in this paper that G is not critical if . d6 6 and ¿ 8, or . d6 20 3 and ¿ 9. This result generalizes earlier results of Vizing (Metody Diskret. Analiz. 5 (1965) 9), Mel’nikov (Mat. Zametki 7 (1970) 671) and Hind and Zhao (Discrete Math. 190 (1998) 107) and Yan and Zhao (Graphs Combin. 16 (2) (2000) 245). It also improves a result by Fiorini (Math. Proc. Cambridge Philos. Soc. 77 (1975) 475) on the number of edges of critical graphs for certain . c © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کامل2-distance coloring of not-so-sparse graphs
The square G of a graph G is the graph obtained from G by adding an edge between every pair of vertices having a common neighbor. A proper coloring of G is also called a 2-distance coloring of G. The maximum average degree Mad(G) of a graph G is the maximum among the average degrees of the subgraphs of G, i.e. Mad(G) = max { 2|E(H)| V (H) |H ⊆ G } . Graphs with bounded maximum average degree ar...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملA practical algorithm for [r, s, t]-coloring of graph
Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 275 شماره
صفحات -
تاریخ انتشار 2004